Section 1 - Chemical Product and Company Identification

Chemical Formula: Mixture

Product Use: Screw machine stock and extrusions.

Other Designations: Alloys 2011, 6262, C40A, C06N, C278, FJ62, variation of 2011.

Sapa AB
Box 5505
SE-114 85 Stockholm, Sweden

USA Phone: Health and Safety: 1-412-553-4649

Emergency Information: USA: Chemtrec: 1-800-424-9300 or 1-703-527-3887

Alcoa: 1-412-553-4001

Website: For a current MSDS, refer to Alcoa websites: www.alcoa.com or Internally at my.alcoa.com EHS Community

Section 2 - Hazards Identification

EMERGENCY OVERVIEW

Solid. Silvery. Odorless. Non-combustible as supplied. Small chips, fine turnings and dust from processing may be readily ignitable.

Explosion/fire hazards may be present when (See Sections 5, 7 and 10 for additional information):

* Dust or fines are dispersed in the air.
* Chips, dust or fines are in contact with water.
* Dust or fines are in contact with certain metal oxides (e.g. rust).
* Molten metal is in contact with water/moisture or certain metal oxides (e.g. rust).

Dust and fume from processing can cause irritation of eyes, skin and upper respiratory tract and metal fume fever.

POTENTIAL HEALTH EFFECTS

The following statements summarize the health effects generally expected in cases of overexposures. Use specific situations should be assessed by a qualified individual. Additional health information can be found in Section 11.

The health effects listed below are not likely to occur unless processing of this product generates dust or fumes.

Eyes

Dust or fume from processing; Can cause irritation.

Skin

Contact with residual oil/oil coating; Can cause irritation. Prolonged or repeated contact with the skin can cause dermatitis. Dust or fume from processing; Can cause irritation.

Inhalation

Health effects from mechanical processing (e.g., cutting, grinding); Can cause irritation of respiratory tract.

Chronic overexposures: Can cause reduction in the number of red blood cells (anemia), skin abnormalities (pigmentation changes) and reproductive harm.

Additional health effects from elevated temperature processing (e.g., welding, melting): Acute overexposures:

Can cause nausea, fever, chills, shortness of breath and malaise (metal fume fever), the accumulation of fluid in the lungs (pulmonary edema) and reduced ability of the blood to carry oxygen (methemoglobin). **Chronic overexposures:** Can cause respiratory sensitization, scarring of the lungs (pulmonary fibrosis) and lung cancer.

Carcinogenicity and Reproductive Hazard

Product as shipped; Does not present any cancer or reproductive hazards.

Dust and fumes from mechanical processing: Can present a cancer hazard (lead); Can present a reproductive hazard (lead, manganese).

Dust and fumes from welding or elevated temperature processing: Can present a cancer hazard (hexavalent chromium, lead compounds, welding fumes). Can present a reproductive hazard (lead, manganese).

Medical Conditions Aggravated By Exposure to Product, Components or Compounds Formed During Processing

Dust or fume from processing; Asthma, chronic lung disease, skin rashes and secondary Parkinson's disease.
Material Safety Data Sheet

Product Name: ALUMINUM ALLOYS WITH LEAD

ID: 390

*** Section 3 - Composition / Information on Ingredients ***

Complete composition is provided below and may include some components classified as non-hazardous.

<table>
<thead>
<tr>
<th>CAS #</th>
<th>Component</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>7429-90-5</td>
<td>Aluminum</td>
<td>>83</td>
</tr>
<tr>
<td>7440-21-3</td>
<td>Silicon</td>
<td><12.6</td>
</tr>
<tr>
<td>7440-50-8</td>
<td>Copper</td>
<td><6.1</td>
</tr>
<tr>
<td>7439-95-4</td>
<td>Magnesium</td>
<td><1.4</td>
</tr>
<tr>
<td>7439-89-6</td>
<td>Iron</td>
<td><1.1</td>
</tr>
<tr>
<td>7439-92-1</td>
<td>Lead</td>
<td><0.8</td>
</tr>
<tr>
<td>7439-96-5</td>
<td>Manganese</td>
<td><0.4</td>
</tr>
<tr>
<td>7440-47-3</td>
<td>Chromium</td>
<td><0.4</td>
</tr>
</tbody>
</table>

Component Information
Additional compounds which may be formed during processing are listed in Section 8.

*** Section 4 - First Aid Measures ***

First Aid: Eyes
Dust or fume from processing: Flush eyes with plenty of water or saline for at least 15 minutes. Consult a physician.

First Aid: Skin
Dust or fume from processing or contact with lubricant/residual oil: Wash skin with soap and water for at least 15 minutes. Consult a physician if irritation persists.

First Aid: Inhalation
Dust or fume from processing: Remove to fresh air. If unconscious or severely injured, check for clear airway, breathing and presence of pulse. Perform CPR if there is no pulse or respiration. Consult a physician.

*** Section 5 - Fire Fighting Measures ***

Flammable/Combustible Properties
This product does not present fire or explosion hazards as shipped. Small chips, turnings, dust and fines from processing may be readily ignitable.

Fire/Explosion
May be a potential hazard under the following conditions:
* Dust or fines dispersed in the air can be explosive. Even a minor dust cloud can explode violently. Dust accumulation on the floor, ledges and beams can present a risk of ignition, flame propagation and secondary explosions.
* Chips, dust or fines in contact with water can generate flammable/explosive hydrogen gas. Hydrogen gas could present an explosion hazard in confined or poorly ventilated spaces.
* Dust or fines in contact with certain metal oxides (e.g., rust). A thermite reaction, with considerable heat generation, can be initiated by a weak ignition source.
* Molten metal in contact with water/moisture or other metal oxides (e.g., rust, copper oxide). Moisture entrapped by molten metal can be explosive. Contact of molten aluminum with other metal oxides can initiate a thermite reaction. Finely divided metals (e.g., powders or wire) may have enough surface oxide to produce thermite reactions/explosions.

Extinguishing Media
Use Class D extinguishing agents on dusts, fines or molten metal. Use coarse water spray on chips and turnings.

Unsuitable Extinguishing Media
DO NOT USE:
* Halogenated agents on small chips, dusts or fines.
* Water around molten metal.
 These agents will react with the burning material.

Fire Fighting Equipment/Instructions
Fire fighters should wear NIOSH approved, positive pressure, self-contained breathing apparatus and full protective clothing when appropriate.
Small/Large Spill

If molten: Contain the flow using dry sand or salt flux as a dam. Do not use shovels or hand tools to halt the flow of molten metal. Allow the spill to cool before remelting as scrap.

*** Section 7 - Handling and Storage ***

Handling/Storage

Product should be kept dry. Avoid contact with sharp edges or heated metal. Hot and cold aluminum are not visually different. Hot aluminum does not necessarily glow red.

Requirements for Processes Which Generate Dusts or Fines

If processing of these products includes operations where dust or extremely fine particulate is generated, obtain and follow the safety procedures and equipment guides contained in Aluminum Association Bulletin F-1 and National Fire Protection Association (NFPA) brochures listed in Section 16. Cover and reseal partially empty containers. Use non-sparking handling equipment. Provide grounding and bonding where necessary to prevent accumulation of static charges during dust handling and transfer operations. (See Section 15).

Local ventilation and vacuum systems must be designed to handle explosive dusts. Dry vacuums and electrostatic precipitators must not be used. Dust collection systems must be dedicated to aluminum dust only and should be clearly labeled as such. Do not co-mingle fines of aluminum with fines of iron, iron oxide (rust) or other metal oxides.

Do not allow chips, fines or dust to contact water, particularly in enclosed areas.

Avoid all ignition sources. Good housekeeping practices must be maintained. Do not use compressed air to remove settled material from floors, beams or equipment.

Requirements for Remelting of Scrap Material and/or Ingot

Molten metal and water can be an explosive combination. The risk is greatest when there is sufficient molten metal to entrap or seal off the water. Water and other forms of contamination on or contained in scrap or remelt ingot are known to have caused explosions in melting operations. While the products may have minimal surface roughness and internal voids, there remains the possibility of moisture contamination or entrapment. If confined, even a few drops of water can lead to violent explosions.

All tooling and containers which come in contact with molten metal must be preheated or specially coated and rust free. Molds and ladles must be preheated or oiled prior to casting. Any surfaces that may contact molten metal (e.g., concrete) should be specially coated.

Drops of molten metal in water (e.g., from plasma arc cutting), while not normally an explosion hazard, can generate enough flammable hydrogen gas to present an explosion hazard. Vigorous circulation of the water and removal of the particles minimize the hazards.

During melting operations, the following minimum guidelines should be observed:

* Inspect all materials prior to furnace charging and completely remove surface contamination such as water, ice, snow, deposits of grease and oil or other surface contamination resulting from weather exposure, shipment, or storage.
* Store materials in dry, heated areas with any cracks or cavities pointed downwards.
* Preheat and dry large or heavy items such as ingot adequately before charging into a furnace containing molten metal. This is typically done by use of a drying oven or homogenizing furnace. The drying cycle should bring the internal metal temperature of the coldest item of the batch to 400°F and then hold at that temperature for 8 hours.
Engineering Controls
If dust or fumes are generated through processing: Use with adequate explosion-proof ventilation to meet the
limits listed in Section 8, Exposure Guidelines.

Personal Protective Equipment
Respiratory Protection
If dust or fumes are generated through processing: Use NIOSH-approved respiratory protection as specified by
an Industrial Hygienist or other qualified professional if concentrations exceed the limits listed in Section 8,
Exposure Guidelines. Suggested respiratory protection: P100 (lead).

Eye Protection
Wear safety glasses/goggles to avoid eye injury.

Skin Protection
Wear impervious gloves to avoid repeated or prolonged skin contact with residual oils and to avoid any skin injury.

General
Personnel who handle and work with molten metal should utilize primary protective clothing like polycarbonate
face shields, fire resistant tapper’s jackets, neck shades (snoods), leggings, spats and similar equipment to
prevent burn injuries. In addition to primary protection, secondary or day-to-day work clothing that is fire resistant
and sheds metal splash is recommended for use with molten metal. Synthetic materials should never be worn
even as secondary clothing (undergarments).

Minimize breathing oil vapors and mist. Remove oil contaminated clothing; launder or dry-clean before reuse.
Remove oil contaminated shoes and thoroughly clean and dry before reuse. Cleanse skin thoroughly after
contact, before breaks and meals, and at the end of the work period. Oil coating is readily removed from skin with
waterless hand cleaners followed by a thorough washing with soap and water.

Exposure Guidelines
A: General Product Information
Alcoa recommends an Occupational Exposure Limit for Chromium (VI) Compounds [both soluble and
insoluble forms] of 0.25 ug/m3 TWA as chromium.
Alcoa recommends an Occupational Exposure Limit for Oil Mist of 0.5 mg/m3 TWA.
Alcoa recommends Occupational Exposure Limits for Manganese of 0.05 mg/m3 TWA (total particulate) and 0.02
mg/m3 TWA (respirable fraction).
Sampling to establish lead exposures is advised where exposures to airborne particulate or fumes are possible.
Consult OSHA Lead Standard 29 CFR 1910.1025 for specific health/industrial hygiene precautions and
requirements to follow when handling lead compounds.

B: Component Exposure Limits
Aluminum (7429-90-5)
ACGIH 10 mg/m3 TWA (metal dust)
OSHA 15 mg/m3 TWA (total dust); 5 mg/m3 TWA (respirable fraction)

Silicon (7440-21-3)
OSHA 15 mg/m3 TWA (total dust); 5 mg/m3 TWA (respirable fraction)

Copper (7440-50-8)
ACGIH 0.2 mg/m3 TWA (fume); 1 mg/m3 TWA (dust and mist, as Cu)
OSHA 0.1 mg/m3 TWA (fume); 1 mg/m3 TWA (dust and mist)

Lead (7439-92-1)
ACGIH 0.05 mg/m3 TWA
OSHA 50 µg/m3 TWA (as Pb); 30 µg/m3 Action Level (as Pb. Poison - see 29 CFR
1910.1025)

Manganese (7439-96-5)
ACGIH 0.2 mg/m3 TWA
OSHA 5 mg/m3 Ceiling (fume)

Chromium (7440-47-3)
ACGIH 0.5 mg/m3 TWA
OSHA 1 mg/m3 TWA
C: Exposure Limits for Additional Compounds Which May Be Formed During Processing

Alumina (non-fibrous) (1344-28-1)
- ACGIH: 10 mg/m^3^ TWA (particulate matter containing no asbestos and <1% crystalline silica)
- OSHA: 15 mg/m^3^ TWA (total dust); 5 mg/m^3^ TWA (respirable fraction)

Silicon dioxide, amorphous (6012-64-2)
- OSHA: (80)% SiO2 mg/m^3^ TWA

Magnesium oxide (1309-48-4)
- ACGIH: 10 mg/m^3^ TWA (inhalable fraction)
- OSHA: 15 mg/m^3^ TWA (total particulate)

Iron oxide (1309-37-1)
- ACGIH: 5 mg/m^3^ TWA (respirable fraction)
- OSHA: 10 mg/m^3^ TWA

Lead, inorganic compounds (Not Available)
- ACGIH: 0.05 mg/m^3^ TWA (as Pb)
- OSHA: 50 µg/m^3^ TWA (as Pb); 30 µg/m^3^ Action Level (as Pb. Poison - see 29 CFR 1910.1025)

Manganese compounds, inorganic (Not Available)
- ACGIH: 0.2 mg/m^3^ TWA (as Mn)
- OSHA: 5 mg/m^3^ Ceiling (as Mn) (related to Manganese compounds)

Chromium (II) compounds (Not Available)
- OSHA: 0.5 mg/m^3^ TWA (as Cr)

Chromium (III) compounds (as Cr) (Not Available)
- ACGIH: 0.5 mg/m^3^ TWA (as Cr)
- OSHA: 0.5 mg/m^3^ TWA (as Cr)

Chromium (VI) compounds - water soluble (Not Available)
- ACGIH: 0.05 mg/m^3^ TWA (as Cr)

Chromium (VI) compounds (certain water insoluble forms) (Not Available)
- ACGIH: 0.01 mg/m^3^ TWA (as Cr)

Chromium (VI) (18540-29-9)
- OSHA: 2.5 µg/m^3^ Action Level; 5 µg/m^3^ TWA (Cancer hazard - See 29 CFR 1910.1026)

Oil mist, mineral (8012-95-1)
- ACGIH: 5 mg/m^3^ TWA (sampled by method that does not collect vapor)
- ACGIH: 10 mg/m^3^ STEL
- OSHA: 5 mg/m^3^ TWA

Ozone (10028-15-6)
- ACGIH: 0.05 ppm TWA (heavy work); 0.08 ppm TWA (moderate work); 0.10 ppm TWA (light work); 0.20 ppm TWA (heavy, moderate or light workloads, <=2 hours)
- OSHA: 0.1 ppm TWA; 0.2 mg/m^3^ TWA

Nitrogen dioxide (10102-44-0)
- ACGIH: 3 ppm TWA
- ACGIH: 5 ppm STEL
- OSHA: 5 ppm Ceiling; 9 mg/m^3^ Ceiling

Nitric oxide (10102-43-9)
- ACGIH: 25 ppm TWA
- OSHA: 25 ppm TWA; 30 mg/m^3^ TWA

*** Section 9 - Physical & Chemical Properties ***

<table>
<thead>
<tr>
<th>Physical State</th>
<th>Solid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiling Point</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Vapor Pressure</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Solubility in Water</td>
<td>None</td>
</tr>
<tr>
<td>pH Level</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Odor Threshold</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Appearance</td>
<td>Silvery</td>
</tr>
<tr>
<td>Melting Point</td>
<td>1005 - 1205 °F (541- 652 ºC)</td>
</tr>
<tr>
<td>Vapor Density</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Specific Gravity</td>
<td>2.72 - 3.13 g/cm3 (0.098 - 0.113 lb/in3)</td>
</tr>
<tr>
<td>Odor</td>
<td>None</td>
</tr>
<tr>
<td>Octanol-Water Coefficient</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

Page 5 of 13 Issue Date 06/15/07 Revision: 5.0000 Print Date 06/15/07
Section 10 - Chemical Stability & Reactivity Information

Stability
Stable under normal conditions of use, storage, and transportation as shipped.

Conditions to Avoid
Chips, fines, dust and molten metal are considerably more reactive with the following:
* **Water:** Slowly generates flammable/explosive hydrogen gas and heat. Generation rate is greatly increased with smaller particles (e.g., fines and dusts). Molten metal can react violently/explosively with water or moisture, particularly when the water is entrapped.
* **Heat:** Oxidizes at a rate dependent upon temperature and particle size.
* **Strong oxidizers:** Violent reaction with considerable heat generation. Can react explosively with nitrates (e.g., ammonium nitrate and fertilizers containing nitrate) particularly when heated or molten.
* **Acids and alkalis:** Reacts to generate flammable/explosive hydrogen gas. Generation rate is greatly increased with smaller particles (e.g., fines and dusts).
* **Halogenated compounds:** Many halogenated hydrocarbons, including halogenated fire extinguishing agents, can react violently with finely divided aluminum.
* **Iron oxide (rust) and other metal oxides (e.g., copper and lead oxides):** A violent thermite reaction generating considerable heat can occur. Reaction with aluminum fines and dusts requires only very weak ignition sources for initiation. Molten aluminum can react violently with iron oxide without external ignition source.
* **Iron powder and water:** An explosive reaction forming hydrogen gas occurs when heated above 1470°F (800°C).
 Thermite explosions have been reported when aluminum alloys were melted in furnaces used for alloying with lead, bismuth or other metals with low melting temperatures. These metals, when added as high purity ingots, can seep through cracks in furnace liners and become oxidized. During subsequent melts in the furnace, molten aluminum can contact these metal oxides resulting in a thermite explosion.

Section 11 - Toxicological Information

Health Effects Associated with Individual Ingredients

Lead dust or fume Can cause irritation of eyes and upper respiratory tract. *Acute overexposures:* Can cause nausea and muscle cramps. *Chronic overexposures:* Can cause weakness in the extremities (peripheral neuropathy), abdominal cramps and other gastrointestinal tract effects, kidney damage, liver damage, central nervous system damage, damage to blood forming organs, blood cell damage and reproductive harm. Can cause reduced fertility and fetal toxicity in pregnant women. [IARC/NTDP]: Listed as "reasonably anticipated to be a human carcinogen" by the NTP. Listed as possibly carcinogenic to humans by IARC (Group 2B)*.

Chromium dust and mist Can cause irritation of eyes, skin and respiratory tract. **Chromium and trivalent chromium** [IARC/NTDP]: Not classified by IARC.

Copper dust and mists Can cause irritation of eyes, mucous membranes, skin and respiratory tract. **Chronic overexposures:** Can cause reduction in the number of red blood cells (anemia), skin abnormalities (pigmentation changes) and hair discoloration.

Silicon, inert dusts **Chronic overexposures:** Can cause chronic bronchitis and narrowing of the airways.

Aluminum dust, fines and fumes Low health risk by inhalation. Generally considered to be biologically inert (milling, cutting, grinding).

Some products are supplied with a lubricant/oil coating or have residual oil from the manufacturing process. **Oil** Can cause irritation of skin. **Skin contact (prolonged or repeated):** Can cause dermatitis.

Health Effects Associated with Individual Compounds Formed During Processing
(The following could be expected if welded, remelted or otherwise processed at elevated temperatures.)

Certain inorganic lead compounds: [IARC/NTDP]: Listed as "reasonably anticipated to be a human carcinogen" by the NTP. Listed as probably carcinogenic to humans by IARC (Group 2A)*.
Hexavalent chromium (Chrome VI) Can cause irritation of eyes, skin and respiratory tract. Skin contact: Can cause irritant dermatitis, allergic reactions and skin ulcers. Chronic overexposures: Can cause perforation of the nasal septum, respiratory sensitization, asthma, the accumulation of fluid in the lungs (pulmonary edema), lung damage, kidney damage, lung cancer, nasal cancer and cancer of the gastrointestinal tract. IARC/NTP: Listed as "known to be a human carcinogen" by the NTP. Listed as carcinogenic to humans by IARC (Group 1)*.

Magnesium oxide fumes Can cause irritation of eyes and respiratory tract. Acute overexposures: Can cause nausea, fever, chills, shortness of breath and malaise (metal fume fever).

Iron oxide Chronic overexposures: Can cause benign lung disease (siderosis). Ingestion: Can cause irritation of gastrointestinal tract, bleeding, changes in the pH of the body fluids (metabolic acidosis) and liver damage.

Copper fume Can cause irritation of eyes, mucous membranes and respiratory tract. Acute overexposures: Can cause nausea, fever, chills, shortness of breath and malaise (metal fume fever).

Silica, amorphous Acute overexposures: Can cause dryness of eyes, nose and upper respiratory tract.

Alumina (aluminum oxide) Low health risk by inhalation. Generally considered to be biologically inert.

If the product is heated well above ambient temperatures or machined, oil vapor or mist may be generated. Oil vapor and mist Can cause irritation of respiratory tract. Acute overexposures: Can cause bronchitis, headache, central nervous system effects (nausea, dizziness and loss of coordination) and drowsiness (narcosis).

Welding, plasma arc cutting, and arc spray metalizing can generate ozone. Ozone Can cause irritation of eyes, nose and upper respiratory tract. Acute overexposures: Can cause shortness of breath, tightness of chest, headache, cough, nausea and narrowing of airways. Effects are reversible on cessation of exposure. Acute overexposures (high concentrations): Can cause respiratory distress, respiratory tract damage, bleeding and the accumulation of fluid in the lungs (pulmonary edema). Effects can be delayed up to 1-2 hours. Additional information: Studies with experimental animals by inhalation have found genetic damage, reproductive harm, blood cell damage, lung damage and death.

Welding fumes IARC/NTP: Listed as possibly carcinogenic to humans by IARC (Group 2B)*.

Plasma arc cutting can generate oxides of nitrogen. Oxides of nitrogen (NO and NO2) Can cause irritation of eyes, skin and respiratory tract. Acute overexposures: Can cause reduced ability of the blood to carry oxygen (methemoglobin). Can cause cough, shortness of breath, the accumulation of fluid in the lungs (pulmonary edema) and death. Effects may be delayed up to 2-3 weeks. Nitrogen dioxide (NO2) Chronic overexposures: Can cause scarring of the lungs (pulmonary fibrosis).

Acute Toxicity of Ingredients/Formed Compounds
A: General Product Information No information available for product.
B: Component Analysis - LD50/LC50
 Silicon (7440-21-3)
 Oral LD50 Rat: 3160 mg/kg
 Magnesium (7439-95-4)
 Oral LD50 Rat: 230 mg/kg
 Iron (7439-89-6)
 Oral LD50 Rat: 984 mg/kg
 Manganese (7439-96-5)
 Oral LD50 Rat: 9 g/kg

C: Formed Compound Toxicity - LD50s/LC50s
 Alumina (non-fibrous) (1344-28-1)
 Oral LD50 Rat: >5000 mg/kg
 Silicon dioxide, amorphous (609012-64-2)
 Oral LD50 Rat: >5000 mg/kg; Dermal LD50 Rabbit: >2000 mg/kg
Material Safety Data Sheet

Product Name: ALUMINUM ALLOYS WITH LEAD

ID: 390

Iron oxide (1309-37-1)
Oral LD50 Rat: >10000 mg/kg
Oil mist, mineral (8012-95-1)
Oral LD50 Mouse: 22 g/kg
Ozone (10028-15-6)
Inhalation LC50 Rat: 4800 ppb/4H
Nitrogen dioxide (10102-44-0)
Inhalation LC50 Rat: 88 ppm/4H
Nitric oxide (10102-43-9)
Inhalation LC50 Rat: 1068 mg/m3/4H

Carcinogenicity of Ingredients
A: Ingredient Carcinogenicity - IARC/NTP

<table>
<thead>
<tr>
<th>Component</th>
<th>CAS</th>
<th>IARC 1</th>
<th>IARC 2A</th>
<th>IARC 2B</th>
<th>IARC 3</th>
<th>IARC 4</th>
<th>NTP K</th>
<th>NTP RA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead</td>
<td>7439-92-1</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Chromium</td>
<td>7440-47-3</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

B: Ingredient Carcinogenicity - ACGIH

Lead (7439-92-1)
ACGIH A3 - Confirmed animal carcinogen with unknown relevance to humans

Chromium (7440-47-3)
ACGIH A4 - Not Classifiable as a Human Carcinogen

C: Ingredient References

Lead (7439-92-1)
IARC Monograph 87 [2006] (ionic lead generated from organic lead and present in the body)
IARC Supplement 7 [1987]. Monograph 23 [1980] (evaluated as a group)

Chromium (7440-47-3)
IARC Monograph 49 [1990] (listed under Chromium and Chromium compounds),
Supplement 7 [1987]

Carcinogenicity of Compounds Formed During Processing
A: Formed Compound Carcinogenicity - IARC/NTP

<table>
<thead>
<tr>
<th>Component</th>
<th>CAS</th>
<th>IARC 1</th>
<th>IARC 2A</th>
<th>IARC 2B</th>
<th>IARC 3</th>
<th>IARC 4</th>
<th>NTP K</th>
<th>NTP RA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silicon dioxide, amorphous</td>
<td>69012-64-2</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Iron oxide</td>
<td>1309-37-1</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Lead, inorganic compounds (related to</td>
<td>Not Available</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Lead compounds)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromium (III) compounds (as Cr)</td>
<td>Not Available</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Chromium (VI) compounds (certain</td>
<td>Not Available</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>water insoluble forms) (related to</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromium (VI) (related to Chromium</td>
<td>Not Available</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>hexavalent compounds)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromium (VI)</td>
<td>18540-29-9</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Oil mist, mineral</td>
<td>8012-95-1</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Welding fumes (NOC)</td>
<td>Not Available</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

B: Formed Compound Carcinogenicity - ACGIH

Alumina (non-fibrous) (1344-28-1)
ACGIH A4 - Not Classifiable as a Human Carcinogen

Magnesium oxide (1309-48-4)
ACGIH A4 - Not Classifiable as a Human Carcinogen

Iron oxide (1309-37-1)
ACGIH A4 - Not Classifiable as a Human Carcinogen

Lead, inorganic compounds (Not Available)
ACGIH A3 - Confirmed animal carcinogen with unknown relevance to humans
Material Safety Data Sheet

Product Name: ALUMINUM ALLOYS WITH LEAD

Chromium (III) compounds (as Cr) (Not Available)
ACGIH: A4 - Not Classifiable as a Human Carcinogen

Chromium (VI) compounds- water soluble (Not Available)
ACGIH: A1 - Confirmed Human Carcinogen

Chromium (VI) compounds (certain water insoluble forms) (Not Available)
ACGIH: A1 - Confirmed Human Carcinogen

Ozone (10028-15-6)
ACGIH: A4 - Not Classifiable as a Human Carcinogen (heavy, moderate, or light workloads)

Nitrogen dioxide (10102-44-0)
ACGIH: A4 - Not Classifiable as a Human Carcinogen

C: Formed Compound References

Silicon dioxide, amorphous (69012-64-2)
IARC: Monograph 68 [1997], Supplement 7 [1987]

Iron oxide (1309-37-1)
IARC: Supplement 7 [1987], Monograph 1 [1972]

Lead, inorganic compounds (Not Available)
IARC: Monograph 87 [2006]

Chromium (III) compounds (as Cr) (Not Available)
IARC: Monograph 49 [1990] (listed under Chromium and Chromium compounds), Supplement 7 [1987]

Chromium (VI) compounds (certain water insoluble forms) (Not Available)
IARC: Monograph 49 [1990] (evaluated as a group) (related to Chromium (VI) compounds)

Chromium (VI) (18540-29-9)
IARC: Monograph 49 [1990] (evaluated as a group)

Oil mist, mineral (8012-95-1)
IARC: Supplement 7 [1987], Monograph 33 [1984]

Welding fumes (NOC) (Not Available)
IARC: Monograph 49 [1990]

Descriptions of IARC and NTP Classifications

IARC 1: The agent is carcinogenic to humans. There is sufficient evidence that a causal relationship existed between exposure to the agent and human cancer.

IARC 2A: The agent is probably carcinogenic to humans. Generally includes agents for which there is limited evidence of carcinogenicity in humans and sufficient evidence of carcinogenicity in experimental animals.

IARC 2B: The agent is possibly carcinogenic to humans. Generally includes agents for which there is limited evidence in humans and less than sufficient evidence in experimental animals.

IARC 3: The agent is not classifiable as to its carcinogenicity to humans. Generally includes agents for which there is inadequate evidence in humans and inadequate or limited evidence in experimental animals.

IARC 4: The agent is probably not carcinogenic to humans. Generally includes agents for which there is evidence suggesting lack of carcinogenicity in humans and in experimental animals.

NTP K: Known to be a human carcinogen.

NTP RA: Reasonably anticipated to be a human carcinogen.

*** Section 12 - Ecological Information ***

Ecotoxicity

A: General Product Information
No information available for product.

B: Component Analysis - Ecotoxicity - Aquatic Toxicity

Copper (7440-50-8)
96 Hr LC50 Pimephales promelas: 23 μg/L; 96 Hr LC50 Oncorhynchus mykiss: 13.8 μg/L; 96 Hr LC50 Lepomis macrochirus: 236 μg/L
72 Hr EC50 Scenedesmus subspicatus: 120 μg/L
96 Hr EC50 water flea: 10 μg/L; 96 Hr EC50 water flea: 200 μg/L
Material Safety Data Sheet

Product Name: ALUMINUM ALLOYS WITH LEAD

ID: 390

Iron (7439-89-6)
96 Hr LC50 Morone saxatilis: 13.6 mg/L [static]

Lead (7439-92-1)
96 Hr LC50 Pimephales promelas: 6.5 mg/L
48 Hr EC50 water flea: 600 µg/L

Environmental Fate
No information available for product.

*** Section 13 - Disposal Considerations ***

Disposal Instructions
Reuse or recycle material whenever possible. Keep scrap separate from other aluminum scrap.

US EPA Waste Number & Descriptions
A: General Product Information
RCRA Status: Not federally regulated in the U.S. if disposed of "as is." If reuse or recycle is not possible, then characterize in accordance with applicable regulations (40 CFR 261 or state equivalent in the U.S.) prior to disposal. TCLP testing is recommended for lead and chromium.

B: Component Waste Numbers
RCRA waste codes other than described under Section A may apply depending on use of product. Refer to 40 CFR 261 or state equivalent in the U.S.

*** Section 14 - Transportation Information ***

Special Transportation

<table>
<thead>
<tr>
<th>PSN #1</th>
<th>PSN #2</th>
<th>PSN #3</th>
<th>PSN #4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notes: (1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UN NA Number:</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proper Shipping Name:</td>
<td>Not regulated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hazard Class:</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Packing Group:</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RQ:</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other - Tech Name:</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other - Marine Pollutant:</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
(1) When "Not regulated," enter the proper freight classification, "MSDS Number," and "Product Name" on the shipping paperwork.

Canadian TDG Hazard Class & PIN: Not regulated

*** Section 15 - Regulatory Information ***

US Federal Regulations
A: General Product Information
All electrical equipment must be suitable for use in hazardous atmospheres involving aluminum powder in accordance with 29 CFR 1910.307. The National Electrical Code, NFPA 70, contains guidelines for determining the type and design of equipment and installation that will meet this requirement.

In reference to Title VI of the Clean Air Act of 1990, this material does not contain nor was it manufactured using ozone-depleting chemicals.
Material Safety Data Sheet

Product Name: ALUMINUM ALLOYS WITH LEAD

ID: 390

B: Component Analysis

This material contains one or more of the following chemicals required to be identified under SARA Section 302 (40 CFR 355 Appendix A), SARA Section 313 (40 CFR 372.65) and/or CERCLA (40 CFR 302.4).

Aluminum (7429-90-5)

SARA 313: 1.0 % de minimis concentration (dust or fume only)

Copper (7440-50-8)

SARA 313: 1.0 % de minimis concentration

CERCLA: 5000 lb final RQ (no reporting of releases of this hazardous substance is required if the diameter of the pieces of the solid metal released is larger than 100 micrometers); 2270 kg final RQ (no reporting of releases of this hazardous substance is required if the diameter of the pieces of the solid metal released is larger than 100 micrometers)

Lead (7439-92-1)

SARA 313: 0.1 % Supplier notification limit; 0.1 % de minimis concentration (when contained in stainless steel, brass, or bronze)

CERCLA: 10 lb final RQ (no reporting of releases of this hazardous substance is required if the diameter of the pieces of the solid metal released is larger than 100 micrometers); 4.54 kg final RQ (no reporting of releases of this hazardous substance is required if the diameter of the pieces of the solid metal released is larger than 100 micrometers)

Chromium (7440-47-3)

CERCLA: 5000 lb final RQ (no reporting of releases of this hazardous substance is required if the diameter of the pieces of the solid metal released is larger than 100 micrometers); 2270 kg final RQ (no reporting of releases of this hazardous material is required if the diameter of the pieces of the solid metal released is larger than 100 micrometers)

SARA 311/312 Physical and Health Hazard Categories:

Immediate (acute) Health Hazard: Yes, if particulates/fumes generated during processing.

Delayed (chronic) Health Hazard: Yes, if particulates/fumes generated during processing.

Fire Hazard: No

Sudden Release of Pressure: No

Reactive: Yes, if molten

State Regulations

A: General Product Information

PENNSYLVANIA "Special Hazardous Substance": Chromium compounds, hexavalent and Mineral oils.

Chemical(s) known to the State of California to cause cancer: Chromium (hexavalent compounds), Lead and lead compounds.

Chemical(s) known to the State of California to cause reproductive toxicity: Lead.

B: Component Analysis - State

The following components appear on one or more of the following state hazardous substances lists:

<table>
<thead>
<tr>
<th>Component</th>
<th>CAS #</th>
<th>CA</th>
<th>FL</th>
<th>MA</th>
<th>MN</th>
<th>NJ</th>
<th>PA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>7429-90-5</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Silicon</td>
<td>7440-21-3</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Copper</td>
<td>7440-50-8</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Magnesium</td>
<td>7439-95-4</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Iron</td>
<td>7439-89-6</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Lead</td>
<td>7439-92-1</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Manganese</td>
<td>7439-96-5</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Chromium</td>
<td>7440-47-3</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

The following statement(s) are provided under the California Safe Drinking Water and Toxic Enforcement Act of 1986 (Proposition 65):

WARNING! This product contains a chemical known to the state of California to cause cancer. This product contains a chemical known to the state of California to cause reproductive/developmental effects.
Material Safety Data Sheet

Product Name: ALUMINUM ALLOYS WITH LEAD
ID: 390

Other Regulations
A: General Product Information
Material meets the criteria for inclusion in WHMIS D2A

B: Component Analysis - WHMIS IDL
The following components are identified under the Canadian Hazardous Products Act Ingredient Disclosure List:

<table>
<thead>
<tr>
<th>Component</th>
<th>CAS #</th>
<th>Minimum Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>7429-90-5</td>
<td>1 %</td>
</tr>
<tr>
<td>Copper</td>
<td>7440-50-8</td>
<td>1 %</td>
</tr>
<tr>
<td>Lead</td>
<td>7439-92-1</td>
<td>0.1 %</td>
</tr>
<tr>
<td>Chromium</td>
<td>7440-47-3</td>
<td>0.1 %</td>
</tr>
</tbody>
</table>

C: Component Analysis - Inventory

<table>
<thead>
<tr>
<th>Component</th>
<th>CAS #</th>
<th>TSCA</th>
<th>DSL</th>
<th>EINECS</th>
<th>AUST.</th>
<th>MITI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>7429-90-5</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Silicon</td>
<td>7440-21-3</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Copper</td>
<td>7440-50-8</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Magnesium</td>
<td>7439-95-4</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Iron</td>
<td>7439-85-6</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Lead</td>
<td>7439-92-1</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Manganese</td>
<td>7439-96-5</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Chromium</td>
<td>7440-47-3</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Inventory Information
MITI Inventory: Pure metals are not specifically listed by CAS or MITI number or the MITI Inventory. However, the class of compounds for each of these metals is listed.

*** Section 16 - Other Information ***

MSDS History
Original: March 4, 1985
Supersedes: February 6, 2007
Revised: June 15, 2007

MSDS Status
06/15/07: Changes in classification on European versions only.
02/06/2007: Reviewed on a periodic basis in accordance with Alcoa policy.
Changes in Sections 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14 & 15.
07/08/2005: Reviewed on a periodic basis in accordance with Alcoa policy.
Changes in Sections 1, 2, 3, 5, 8 and 15.
05/24/2002: Changes in Sections 1, 2, and 8.

Prepared By
Hazardous Materials Control Committee.

MSDS System Number
214326

Other Information
* NFPA 65, Standard for Processing and Finishing of Aluminum (NFPA phone: 800-344-3555)
* NFPA 651, Standard for Manufacture of Aluminum and Magnesium Powder
* NFPA 70, Standard for National Electrical Code (Electrical Equipment, Grounding and Bonding)
* NFPA 77, Standard for Static Electricity
* Guide to Occupational Exposure Values-2007, Compiled by the American Conference of Governmental Industrial Hygienists (ACGIH).
* Documentation of the Threshold Limit Values and Biological Exposure Indices, Sixth Edition, 1991, Compiled by the American Conference of Governmental Industrial Hygienists, Inc. (ACGIH).

Key-Legend:
ACGIH American Conference of Governmental Industrial Hygienists
AICS Australian Inventory of Chemical Substances
CAS Chemical Abstract Service
CERCLA Comprehensive Environmental Response, Compensation, and Liability Act
CFR Code of Federal Regulations
CPR Cardio-pulmonary Resuscitation
DOT Department of Transportation
DSL Domestic Substances List (Canada)
EC Effective Concentration
ED Effective Dose
EINECS European Inventory of Existing Commercial Chemical Substances
EPA Environmental Protection Act
IARC International Agency for Research on Cancer
LC50 Lethal concentration (50 percent kill)
LC10 Lowest published lethal concentration
LD50 Lethal dose (50 percent kill)
LD10 Lowest published lethal dose
LFL Lower Flammable Limit
MITI Ministry of International Trade & Industry
NFPA National Fire Protection Association
NIOSH National Institute for Occupational Safety and Health
NORM Naturally Occurring Radioactive Materials
NTP National Toxicology Program
OEL Occupational Exposure Limit
OSHA Occupational Safety and Health Administration
PEL Permissible Exposure Limit
PIN Product Identification Number
PSN Proper Shipping Name
RCRA Resource Conservation and Recovery Act
SARA Superfund Amendments and Reauthorization Act
STEL Short Term Exposure Limit
TCLP Toxic Chemicals Leachate Program
TDG Transportation of Dangerous Goods
TLV Threshold Limit Value
TSCA Toxic Substance Control Act
TWA Time Weighted Average
UFL Upper Flammable Limit
WHMIS Workplace Hazardous Materials Information System
atm atmosphere
cm centimeter
g, gm gram
in inch
kg kilogram
lb pound
m meter
mg milligram
ml, ML milliliter
mm millimeter
mppcf million particles per cubic foot
n.o.s. not otherwise specified
ppb parts per billion
ppm parts per million
psia pounds per square inch absolute
µ micron
ug microgram

INFORMATION HEREIN IS GIVEN IN GOOD FAITH AS AUTHORITATIVE AND VALID; HOWEVER, NO WARRANTY, EXPRESS OR IMPLIED, CAN BE MADE.

This is the end of MSDS # 390
WARNING

Physical Hazards: Non-combustible as supplied. Small chips, fine turnings and dust may ignite readily. Explosion potential may be present when: (1) dusts or fines are dispersed in the air, (2) fines, dust or molten aluminum are in contact with certain metal oxides, (e.g., rust) or (3) chips, fines, dust or molten aluminum are in contact with water or moisture.

If coated with oil, may cause skin irritation/dermatitis by contact.

Health Hazards: Health effects generally expected in cases of overexposures:
EYES: Dust or fume from processing: Can cause irritation.
SKIN: Contact with residual oil/oil coating: Can cause irritation. Prolonged or repeated contact with the skin can cause dermatitis. Dust or fume from processing: Can cause irritation.
INHALATION: Health effects from mechanical processing (e.g., cutting, grinding): Can cause irritation of respiratory tract. Chronic overexposures: Can cause reduction in the number of red blood cells (anemia), skin abnormalities (pigmentation changes) and reproductive harm. Additional health effects from elevated temperature processing (e.g., welding, melting): Acute overexposures: Can cause nausea, fever, chills, shortness of breath and malaise (metal fume fever), the accumulation of fluid in the lungs (pulmonary edema) and the reduced ability of the blood to carry oxygen (methemoglobin). Chronic overexposures: Can cause respiratory sensitization, scarring of the lungs (pulmonary fibrosis) and lung cancer.

WARNING: Chromium (Hexavalent compounds), Lead and Lead compounds are chemicals known to the state of California to cause cancer. Lead is known to cause reproductive toxicity (Proposition 65).

Precautions: Avoid generating dust. Keep product dry. Use with adequate explosion-proof ventilation. Wear safety glasses and gloves to prevent eye and skin injury. Wear appropriate respiratory protection (P100) if concentrations exceed the permissible limits. Use good personal hygiene practices to guard against accidental ingestion.

First Aid (dust or fume from processing): EYES: Flush eyes with plenty of water or saline for at least 15 minutes. Consult a physician. SKIN: Wash skin with soap and water for at least 15 minutes. Consult a physician if irritation persists. INHALATION: Remove to fresh air. If unconscious or severely injured, check for clear airway, breathing and presence of pulse. Perform CPR if there is no pulse or respiration. Consult a physician.

Fire Fighting: Use Class D extinguishing agents on dusts, fines or molten metal. Use coarse water spray on chips and turnings. DO NOT USE: Halogenated agents on small chips, dusts or fines, water around molten metal. These agents will react with the burning material.

Read Alcoa Material Safety Data Sheet No. 390 for more information about use and disposal.

USA Emergency Phone: (412) 553-4001.

INGREDIENTS: CAS NUMBERS: INGREDIENTS: CAS NUMBERS:
Aluminum (7429-90-5) Iron (7439-89-6)
Silicon (7440-21-3) Lead (7439-92-1)
Copper (7440-50-8) Manganese (7439-96-5)
Magnesium (7439-95-4) Chromium (7440-47-3)

Sapa AB
Box 5505, SE-114 85 Stockholm, Sweden
6/07 390